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Abstract: A mononuclear Co(II) complex of a Schiff base ligand derived from 5-Bromo-vanillin
and 4-aminoantipyrine, that has a compressed tetragonal bipyramidal geometry and exhibiting
field-induced slow magnetic relaxation, has been synthesized and characterized by single crystal
X-ray diffraction, elemental analysis and molecular spectroscopy. In the crystal packing, a hydrogen-
bonded dimer structural topology has been observed with two distinct metal centers having slightly
different bond parameters. The complex has been further investigated for its magnetic nature on a
SQUID magnetometer. The DC magnetic data confirm that the complex behaves as a typical S = 3/2
spin system with a sizable axial zero-field splitting parameter D/hc = 38 cm−1. The AC susceptibility
data reveal that the relaxation time for the single-mode relaxation process is τ = 0.16(1) ms at T = 2.0 K
and BDC = 0.12 T.

Keywords: Schiff base; slow relaxation; molecular spectroscopy; packing; zero-field

1. Introduction

Single-molecule and single-ion magnets (SMMs, SIMs), realized in transition metal
complexes showing slow magnetic relaxation, have gained much attention in molecular
magnetism. These types of compounds are applicable in various technological areas
such as switches, sensors, displays, low-temperature magnetic refrigerators, high-density
information storage devices and quantum computing [1–6]. They show characteristic
magnetic properties, such as slow relaxation of magnetization due to magnetic bistability
of two ± MS levels at a molecular level [7,8]. Arising from a bistable ground state and
uniaxial anisotropy in SMMs, a non-zero magnetization of the compound can be retained
upon the removal of an external field below its specific blocking temperature [8]. Due to
this retained magnetization, even in the absence of an applied field, SMMs can be utilized
in information storage at the molecular level or in spintronic devices [9–12].
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Historically, SMMs of transition metals with polynuclear topology possessed a high
spin ground state with magnetic anisotropy leading to an energy barrier to the reorientation
of their magnetization [13–15]. Due to the structural complexity in polynuclear complexes,
prediction of the magnetic anisotropy for enhancing the energy barrier and studying the
stability in solution is becoming complicated and difficult [16–20]. Later, many works
have been reported on mononuclear Schiff base single molecule (single-ion) magnets to
overcome the complexity and difficulty [21,22]. Mononuclear single molecule magnets,
so-called single ion magnets (SIMs), consist of a single paramagnetic center per molecule in
a given ligand environment [23–25].

The d-block multinuclear complexes are probably not the best choice for obtaining
higher effective energy barriers. Hence, the investigation of the d-block mononuclear
chemistry is growing exponentially because the high magnetic anisotropy enhances the
barrier to spin reversal. It is striking that few of these compounds reported to date are
mononuclear magnets in the zero field [13–15,26]. The design of SIMs and SMMs is still
a big challenge concerning the fundamental understanding of the origin of magnetic
anisotropy and dynamic relaxation. Magnetic anisotropy achieved by strict regulation of
geometry is the most critical factor for high-performance SMMs and SIMs [27], which is
dependent on axial anisotropy (D), along with spin ground state (S) [28]. Designing the
Schiff base ligand-field, which can preserve strict axial symmetry around the metal ion,
is one of the best approaches to increase the zero-field splitting in d-metal mononuclear
magnets. To do so, the design and synthesis of new ligands and the proper use of existing
ones will remain at the fore [29–31].

Magnetic anisotropy, which is a defining feature of SIMs, can be enhanced by weak
ligand fields, designing a molecule with a lower oxidation state, higher local symmetry
and lower coordination number [14,19,32,33]. All these factors are important to obtaining
3d-based SMMs and SIMs because in 3d metals, the orbital angular momentum is readily
quenched by the ligand field [14,34]. For mononuclear 3d metal compounds showing slow
magnetic relaxation, a low coordination number which leads to a relatively weak Schiff
base ligand field is needed because they reduce the 3d orbital splitting energy, thereby
enhancing magnetic anisotropy [35–39]. In addition, this type of ligand can be well used as a
coordinative moiety of transition metal complexes or as a building block for supramolecular
assemblies by taking advantage of π-conjugation. In addition, these functional ligands can
act as a bridge between different metal centers to give polynuclear complexes [40–42].

In transition metal-based mononuclear molecular magnetism, the ions are typically
low-coordinate ions in the 2+ and 3+ oxidation states and are extremely Lewis acidic so
that they can readily bind to nucleophiles (ligands) and can be directly bound to charge
compensating atoms [43]. The majority of monometallic 3d molecular magnets are based
on the half-integer spin of the metal ion, due to its ability to display slow relaxation of
magnetization in a range of coordination environments [44]. Co (II) ions are interesting
candidates among transition metal-based single-ion magnets because of their non-integer
spin ground state, which decreases the probability of quantum tunneling of magnetization
(QTM). Based on this argument, many low coordinate Co(II) single-molecule magnets of
different coordination geometry were reported to date [32,45–47].

Magnetic anisotropy, which governs the barrier height for slow relaxation of magnetiza-
tion, is the key factor in the design of SIM compounds. A negative D value results in uniaxial
type magnetic anisotropy and a positive D value results in easy plane anisotropy, albeit only
under an external magnetic field so-called field-induced SMM. The negative sign of D (easy
axis) has advantages over the positive sign of D (easy plane), because the former energetically
favors high |mS| states whereas the latter favors the mS = 0 singlet for systems with integer
S and the mS = ±1/2 Kramer’s doublet for those with half-integer S [48–53]. Since the spin
is free to rotate within the easy plane, this may result in zero energy barriers unless there is
some in-plane anisotropy. To overcome these phenomena, the potential chelating nature of the
ligands on the cobalt geometry and its small bite angle would induce significant geometrical
constraints at the metal center to retain magnetic anisotropy.
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We are interested to give attention to a Co(II) complex because of its high-spin d7

configuration, which is comfortable to generate large magnetic anisotropy with orbital
contribution either by an orbitally degenerate ground state with unquenched orbital mo-
mentum by the crystal field or by the spin-orbit coupling when the orbital degeneracy is
broken in a low-symmetry ligand field [54]. Herein, we present our investigations on a
mononuclear Co (II) Schiff base complex showing field-induced slow magnetic relaxation.

2. Results and Discussion
2.1. Crystal Structure Description

The key structural features of the complex under study are summarized in Table S1.
A perspective view of this complex with a selected atom-numbering scheme is shown
in Figure 1. Single-crystal X-ray structure analysis revealed that the crystal structure
consists of a mononuclear neutral molecule of Co(C19H17BrN3O3)2 (1) with the molecular
formula, C38H34Br2CoN6O6·4(CH3OH), which crystallizes in the monoclinic Cc space
group (Figure 1 and Table S1). The cobalt in the structure occupies a special position
with site symmetry 1 in the centrosymmetric space group. The symmetry is between the
two molecules within the unit cell. This means that the asymmetric unit contains two
compressed tetragonal bipyramidal complex molecules, each containing two ligands and
one Co (II) ion in a coordination environment.
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Figure 1. Single-crystal X-ray structure of 1 shown at 50% probability.

The four basal oxygen atoms and two nitrogen atoms, where both of the nitrogen
atoms coordinated to the Co (II) center are from two identical coordinated ligands. The
molecule crystallizes with four solvent (methanol) molecules in the coordination lattice.
The non-coordinated methoxy oxygen acts as a hydrogen bond acceptor from adjacent
groups and solvent molecules in the lattice.

There are two crystallographically distinct cobalt atoms Co1/Co2 (Figure 1) in the
compound, but both have the same surroundings with very close bond lengths and an-
gles. The cobalt (II) environment in both centers (Co1/Co2) complies with a compressed
tetragonal bipyramidal of the {CoO4N2} group. The {CoN2O4} group possesses Co-O bond
distances from 1.995(2) (Co2-O11) to 2.242(2) Å (Co2-O9) (Table S2), where four oxygen
atoms from two ligands occupy the equatorial positions around the central Co (II) ion. The
axial positions are occupied by two coordinated nitrogen atoms from the two ligands with
the coordination distance of 2.079 Å for Co2-N7 and 2.092 Å for Co2-N10 in Co2 center as
well as 2.087 Å for Co1-N1 and 2.086 Å for Co1-N4, respectively (Table S2). The dissim-
ilarity in Co-N bond lengths in (Figure 1) is apparent that the coordination polyhedron
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in the compound is much distorted because of the significant differences the significant
differences found in the metal–ligand bond lengths. This can also be supported by the
linear N-N distance of 4.169 Å in Co1, whereas 4.163 Å is in the Co2 center. All of the Co-O
and the Co-N bond lengths of the molecule are in good agreement with the reported bond
distances with high spin CoII ions [36,55,56].

The bond distance of Co2-O11 1.995(2) Å and the Co2-O9 2.242(2) Å of the ligand
are substantially the shortest and longest distances recorded in the molecule, respectively.
The slight difference in the values of the cobalt-to-nitrogen bond lengths, which covers the
maximum ranges of 2.079(2) Å (Co2-N7) to 2.092 Å (Co2-N10) in the Co2 center than the
range 2.086 Å (Co1-N4) to 2.087 Å (Co1-N1) in the Co1, is indicative of the more asymmetric
property in the Co1 center.

The deviation of angles of N10-Co2-O12 (82.05(2))◦ and N10-Co2-O11 (88.89(2))◦ as
well as N7-Co2-O9 (80.99(9))◦ and N7-Co2-O8 (89.57(9))◦ in the Co2 center from the angle
of an ideal octahedron (90◦) is also further evidence for a greater angular distortion of the
coordination center from the octahedral to a compressed tetragonal bipyramidal geometry.

The complex also contains non-covalent intermolecular interactions (hydrogen bond-
ing and π-π interactions) between neighboring complex molecules, giving rise to the
formation of a 2D network (Figure S1a,b), chain structures and a supramolecular three-
dimensional structure (Figure S2a,b) through hydrogen bonding (Figure 2a) and π-π inter-
actions between the rings (Figure 2b). The intermolecular hydrogen bond and π-π stacking
interactions between coordinated ligand and solvent molecules in the lattice are linked to
the neighboring molecules and result in the 2D network. This kind of interaction has the ad-
vantage to generate even polymers [57]. The noncovalent interactions in the cobalt complex
have additional importance, which play a vital role in stabilizing the 2D and 3D network
structures [58]. In the crystal lattice of the complex, the solvent molecules and some of
the coordinated oxygen groups are efficient hydrogen bond donors, therefore, extensive
hydrogen bonding is observed in the molecules. Two different hydrogen bonding modes
appear in the molecule with shortest and longest bond distances. One is the intramolecular
hydrogen bonds found with the equatorially coordinated oxygen atoms from the ligand
to the solvent oxygen atom with the shortest bond distance of O-O, 2.605 Å. The second
is with the methoxy oxygen atoms from the ligand to the solvent oxygen atom with the
longest bond distance of O-O, 3.023 Å. These hydrogen bonds link the individual solvent
molecules in the lattice to neighboring molecules resulting in infinite chains running along
the b axis as in the close packing structure observed in Figure S2. The packing arrangement
contains eight molecules of the complex in a unit cell.
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In addition to this, unconventional hydrogen bonding interactions are also observed
in the molecule. These are the polar methanol solvents in the lattice and form strong
self-hydrogen bonds with the shortest and longest bond distances of 2.716 Å and 3.010 Å,
respectively (Figure 2a). The hydrogen atom of the methanol is involved in hydrogen-
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bonding interactions with neighboring molecules, albeit with somewhat smaller contact
distances in the range of 2.716 Å for connecting with the coordinated oxygen and in the
range of 2.754 Å with non-coordinated methoxy oxygen of the o-vanillin entity. The
observed H-bonding and π-π stacking in the molecule played a vital role in governing the
architecture of the structure by generating hydrogen-bonded dimers. As expected, the
H-bonding and π-π stacking plays a crucial role in structure modification [13,14,59–63]. The
presence of methanol in the structure does not show any disorder in the crystal structure,
probably due to its coordination in the crystal lattice only.

The second type of non-covalent interactions observed in the molecule is π-π interac-
tions, which are observed between rings containing π-orbitals; those usually exist between
two molecules with relatively “electron-rich/electron deficient” rings of the coordinated
ligand. As observed in Figure 2b, highly pronounced π-π stacking exists between the rings
with the shortest and longest C-C interplanar distances of two rings of 3.481 Å and 3.765 Å,
respectively (Figure 2b). These intermolecular interactions give rise to layer formation for
the molecule as discussed above and shown in Figure S2a,b. The π-π interaction has great
importance in tuning and prediction of crystal structures.

The information gained from crystal structures on the covalent metal–ligand bond
distances and angles has often other advantages on how the complexes or coordination
ligands are packed in the crystal lattice. The effect of π-π interactions exhibit similar charac-
teristics with those of hydrogen bonding on the crystal packing and then on the magnetic
properties of the molecule. It is known that six-coordinated cobalt complexes are always
more stable than with other geometries [50,64–66]. From this viewpoint, six-coordinated
cobalt SIMs are promising for achieving a nice workable device in the future [67–69]. The
π-π interactions enhance the conformational stability for the molecule and may provide
chances of intermolecular electron transfer among the system so as to enhance or retard the
magnetic property of the molecule.

The shortest and longest intralayer or the intrachain Co . . . Co distances are between
the two adjacent molecules and are nonequivalent (7.034 Å and 7.415 Å, respectively) for
the molecule with alternatively packed layers along the b axis in an ellipsoid configuration
as depicted in Figure S3, indicating that the metal centers in a unit cell packed structure
has less probability to interact each other through hydrogen bonding and π-π interactions.
This property is very good to have appreciable magnetic properties for the molecule.

2.2. Magnetic Data

DC magnetic data was taken at B = 0.1 T. Raw magnetic data has been corrected for the
underlying diamagnetism and presented as the temperature dependence of the effective
magnetic moment (Figure 3). Its room temperature µeff = 4.67 µB is typical for an S = 3/2
spin system. On cooling, it adopts a value of µeff = 3.70 µB at T = 2.0 K, which is a fingerprint
of zero-field splitting. The magnetization per formula unit at T = 2.0 K and B = 7.0 T adopts
a value M1 = Mmol/(NAµB) = 2.63, which is smaller than the hypothetical spin-free value of
3.0 again due to the zero-field splitting. The DC susceptibility and magnetization data was
fitted simultaneously by employing the spin Hamiltonian that includes the axial zero-field
splitting parameter D.

Ĥk = D(Ŝ2
z −

→
S

2
/3)}−2 + µBB(gzŜz cos ϑk + gxŜx sin ϑk)}−1

The Zeeman term has been applied in 16 directions of the magnetic field along a quarter
of meridian and the resulting magnetic susceptibility and/or magnetization was averaged
in order to mimic the situation in the powder sample. Results of the fitting procedure
are represented by solid lines in Figure 3. In match with the theoretical predictions, the
D-parameter adopts a positive value for the compressed tetragonal bipyramid of the
{CoO4N2} chromophore: D/hc = 29.6cm−1. Whereas the fit of the susceptibility is almost
perfect, theoretical magnetization at higher fields declines from the experimental one. One
of the reasons could originate in the fact that the solid-state sample contains two different
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units with different distortion from the ideal tetragonal bipyramid. A small van Vleck
correction χTIM compensates the uncertainty in the underlying diamagnetism and some
temperature-independent paramagnetism.
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Figure 3. Left: temperature dependence of the effective magnetic moment; inset-molar magnetic
susceptibility; right-field dependence of the magnetization. Lines–fitted with D/hc = 29.6 cm−1,
gx = 2.49, gz = 2.12, χTIM = 2.7 × 10−9 m3 mol−1 [SI].

The AC susceptibility data was scanned first for a set of trial frequencies of the
oscillating field BAC = 0.35 mT at T = 2.0 K and ramping the external magnetic field. At
zero fields, the out-of-phase susceptibility is silent. However, with increasing BDC, the χ”
component passes through a maximum and then attenuates (Figure 4). This is a feature of
the slow magnetic relaxation that is supported by the external magnetic field.
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2.49, gz = 2.12, χTIM = 2.7 × 10−9 m3 mol−1 [SI]. 
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A field effect of the AC susceptibility is presented in Figure 5. It clearly can be seen 
that the maximum of the out-of-phase susceptibility culminates at the frequency of 1000 
Hz and the external field BDC = 0.02–0.18 T. The in-phase and the out-of-phase susceptibil-
ity were fitted simultaneously to the extended Debye model and the obtained parameters 
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ter α, and the relaxation time (τ) were used in reconstructing the solid line that passes 
tightly through the discrete experimental points).  
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A field effect of the AC susceptibility is presented in Figure 5. It clearly can be seen
that the maximum of the out-of-phase susceptibility culminates at the frequency of 1000 Hz
and the external field BDC = 0.02–0.18 T. The in-phase and the out-of-phase susceptibility
were fitted simultaneously to the extended Debye model and the obtained parameters (the
adiabatic susceptibility χS, the isothermal susceptibility χT, the distribution parameter α,
and the relaxation time (τ) were used in reconstructing the solid line that passes tightly
through the discrete experimental points).

Temperature evolution of the AC susceptibility components is presented at Figure 6.
It can be seen that the in-phase susceptibilities for different frequencies merge at T~6.5 K;
at the same temperature, the out-of-phase component vanishes. This is the temperature at
which the substance turns to the ordinary paramagnetic phase.

The same data-set has been rearranged in Figure 7 where the AC susceptibility com-
ponents are plotted as a function of the frequency f of the oscillating field for a set of
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temperatures; everything at the selected external field BDC = 0.12 T. The relaxation time for
the single-mode relaxation process is τ = 0.16(1) ms at T = 2.0 K and BDC = 0.12 T.
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Arrhenius-like plot lnτ vs. T−1 is shown in Figure 8. It shows, with expectations,
a decrease of the relaxation time on heating. The same data-set is used in the right
panel where three low-temperature and high-temperature points were fitted by a straight
line: lnτ− = b[0] + b[1]lnT. This allows subtracting the temperature coefficient τ−1 = CTn:
n(LT) = 1.9 suggests a direct relaxation mechanism (close to its hindered modification called
the phonon-bottleneck effect), whereas n(HT) = 3.8 and tends to approach the value typical
for the Raman relaxation process.



Inorganics 2022, 10, 105 8 of 12

Inorganics 2022, 10, x FOR PEER REVIEW 8 of 12 
 

 

Arrhenius-like plot lnτ vs. T−1 is shown in Figure 8. It shows, with expectations, a 
decrease of the relaxation time on heating. The same data-set is used in the right panel 
where three low-temperature and high-temperature points were fitted by a straight line: 
lnτ- = b [0] + b[1]lnT. This allows subtracting the temperature coefficient τ−1 = CTn: n(LT) = 
1.9 suggests a direct relaxation mechanism (close to its hindered modification called the 
phonon-bottleneck effect), whereas n(HT) = 3.8 and tends to approach the value typical 
for the Raman relaxation process. 

(1/T) /K-1
0.1 0.2 0.3 0.4 0.5

ln
(τ

/s
)

-12

-8

-4
BDC = 0.12 T

ln(T/K)
0.5 1.0 1.5 2.0

ln
(τ

H
F/s

)

-14

-12

-10

-8

-6
BDC = 0.12 T

 b[0] -7.40
 b[1] -1.91

 b[0] -4.83
 b[1] -3.77

 
Figure 8. Temperature dependence of the relaxation time for the molecule. 

3. Materials and Methods 
CoCl2•6H2O, 5-bromo-vanillin, 4-aminoantipyrine, methanol, triethylamine and eth-

anol were used for the synthesis. All chemicals were commercially available and used as 
received. The crystal structure was obtained from single crystal X-ray analysis. The mag-
netic susceptibility measurements were performed with a Quantum Design MPMS XL-7 
SQUID magnetometer between 2 and 300 K on a polycrystalline sample of 30 mg mixed 
with eicosane. The data were corrected for diamagnetic contributions of all components. 

3.1. Synthesis Co(C19H17BrN3O3)2·4CH3OH (1) 
The complex 1 was prepared by the addition of CoCl2•6H2O (0.1 mmol, 0.0238 g) in 

10 mL methanol to a mixture of 5-bromo-vanillin (1.0 mmol, 0.231 g) in 5 mL methanol 
and 4-aminoantipyrine (1.0 mmol, 0.203 g) in 5 mL methanol in the presence of 2 drops of 
triethylamine. The resultant solution was refluxed for 2 h as in Scheme 1. It was then 
cooled and filtered. The crystals suitable for X-ray diffraction analysis were separated as 
orange to red blocks by slow evaporation in three weeks. The yield, 0.724 g, 75%. CHN 
calculated (%) for C42H50Br2CoN6O10 (1) C, 49.5, H, 4.9, N, 8.2, Co, 5.7 found (%) C, 48.9, H, 
4.7, N, 8.1, Co, 5.5, IR cm−1 (KBr); 3477(s), 2924(m), 1630 (s), 1583(s), 867(s),504(s), 463(m). 

 
Scheme 1. Synthesis of the complex 1. 

3.2. Physical Measurements 
DC measurement was performed on a polycrystalline sample mixed with eicosane 

between 300–2 K using a SQUID MPMS-XL magnetometer. A small field BDC = 0.1 T has 
been applied in taking the temperature dependence of the static magnetic susceptibility 

Figure 8. Temperature dependence of the relaxation time for the molecule.

3. Materials and Methods

CoCl2•6H2O, 5-bromo-vanillin, 4-aminoantipyrine, methanol, triethylamine and
ethanol were used for the synthesis. All chemicals were commercially available and used
as received. The crystal structure was obtained from single crystal X-ray analysis. The mag-
netic susceptibility measurements were performed with a Quantum Design MPMS XL-7
SQUID magnetometer between 2 and 300 K on a polycrystalline sample of 30 mg mixed
with eicosane. The data were corrected for diamagnetic contributions of all components.

3.1. Synthesis Co(C19H17BrN3O3)2·4CH3OH (1)

The complex 1 was prepared by the addition of CoCl2•6H2O (0.1 mmol, 0.0238 g) in
10 mL methanol to a mixture of 5-bromo-vanillin (1.0 mmol, 0.231 g) in 5 mL methanol
and 4-aminoantipyrine (1.0 mmol, 0.203 g) in 5 mL methanol in the presence of 2 drops
of triethylamine. The resultant solution was refluxed for 2 h as in Scheme 1. It was then
cooled and filtered. The crystals suitable for X-ray diffraction analysis were separated as
orange to red blocks by slow evaporation in three weeks. The yield, 0.724 g, 75%. CHN
calculated (%) for C42H50Br2CoN6O10 (1) C, 49.5, H, 4.9, N, 8.2, Co, 5.7 found (%) C, 48.9, H,
4.7, N, 8.1, Co, 5.5, IR cm−1 (KBr); 3477(s), 2924(m), 1630 (s), 1583(s), 867(s),504(s), 463(m).
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3.2. Physical Measurements

DC measurement was performed on a polycrystalline sample mixed with eicosane
between 300–2 K using a SQUID MPMS-XL magnetometer. A small field BDC = 0.1 T has
been applied in taking the temperature dependence of the static magnetic susceptibility
between T = 2–350 K. These data was corrected for the underlying diamagnetism. Alternat-
ing current (ac) magnetic susceptibility measurements were performed in the temperature
range of 2.0–6.5 K under variable applied static fields.

3.3. X-ray Crystallography

X-ray diffraction data of single crystals was collected on a STOE Stradivari X-ray
diffractometer equipped with a variable-temperature nitrogen cold stream using GaK\α
radiation (λ = 1.34143 Å) using a mirror monochromator at 160 K (Table S1). Crystal
parameters and refinement results for the compound are summarized in Table S1. The
structure was solved by standard direct methods and subsequently completed by Fourier
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recycling by using the SHELXTL software packages. The obtained model was refined
with SHELXL against F2 on all data by full-matrix least squares. In the molecule, all non-
hydrogen atoms were refined anisotropically. The graphical manipulation was performed
with the Olex2 and Mercury program.

4. Conclusions

In a nutshell, we have synthesized and characterized mononuclear cobalt(II) complex
with a Schiff base ligand formed from 5-bromo-vanillin and 4-aminoantipyrine, which
exhibits field-induced, slow magnetic relaxation. Single crystal XRD studies reveal that
the ligand coordinates to the metal ion through carbonyl oxygen of the amino moiety and
deprotonated hydroxyl group from aldehyde part and the azomethine nitrogen, out of
two ligand motifs, generating compressed tetragonal bipyramidal coordination geometry
around Co(II) ion. The presence of benzene rings in the ligand not only effectively tune
the coordination environment but also dramatically facilitates the crystal packing through
various weaker non-covalent forces through H-bonding and π-π interactions. This study
has initiated our aim of opening up more monomeric low-valent complexes with first row
transition metals, exhibiting superior SMM characteristics with Schiff base ligands.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/inorganics10080105/s1, Figure S1: Crystal packing along b axis
(a) without H-bonding (b) with H-bonding; Figure S2: Crystal packing along b axis (a) without
H-bonding (b) with H-bonding; Figure S3: Intralayer M...M distances in the molecule; Table S1:
Crystal data and structure refinement for Co(C19H17BrN3O3)2; Table S2: Selected bond Lengths for
Co(C19H17BrN3O3)2; Table S3. Selected bond angles for Co(C19H17BrN3O3).
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